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Abstract

A new formulation of the immersed boundary method with a structure algebraically identical to the traditional frac-
tional step method is presented for incompressible flow over bodies with prescribed surface motion. Like previous meth-
ods, a boundary force is applied at the immersed surface to satisfy the no-slip constraint. This extra constraint can be
added to the incompressible Navier–Stokes equations by introducing regularization and interpolation operators. The cur-
rent method gives prominence to the role of the boundary force acting as a Lagrange multiplier to satisfy the no-slip con-
dition. This role is analogous to the effect of pressure on the momentum equation to satisfy the divergence-free constraint.
The current immersed boundary method removes slip and non-divergence-free components of the velocity field through a
projection. The boundary force is determined implicitly without any constitutive relations allowing the present formulation
to use larger CFL numbers compared to some past methods. Symmetry and positive-definiteness of the system are pre-
served such that the conjugate gradient method can be used to solve for the flow field. Examples show that the current
formulation achieves second-order temporal accuracy and better than first-order spatial accuracy in L2-norms for one-
and two-dimensional test problems. Results from two-dimensional simulations of flows over stationary and moving cyl-
inders are in good agreement with those from previous experimental and numerical studies.
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1. Introduction

Immersed boundary methods (IBMs) have gained popularity for their ability to handle moving or deform-
ing bodies with complex surface geometry [33,27]. Peskin [31] first introduced the method by describing the
flow field with an Eulerian discretization and representing the immersed surface with a set of Lagrangian
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points. The Eulerian grid is not required to conform to the body geometry as the no-slip boundary condition is
enforced at the Lagrangian points by adding appropriate boundary forces. The boundary forces that exist as
singular functions along the surface in the continuous equations are described by discrete delta functions that
smear (regularize) the forcing effect over the neighboring Eulerian cells.

Peskin originally used the IBM to simulate blood flow inside a heart with flexible valves, where the forcing
function was computed by Hooke’s law [31,32]. This technique was later extended to rigid bodies by taking the
spring constant to be a large value [3,22]. Goldstein et al. [17] applied the concept of feedback control to com-
pute the force on the rigid immersed surface. The difference between the velocity solution and the boundary
velocity is used in a proportional-integral controller. For the aforementioned techniques to model flow over
rigid bodies, the choice of gain (stiffness) remains ad hoc and large gain results in stiff equations. Our intention
is to remove all tuning parameters and formulate the IBM in a general framework for rigid bodies (as well as
bodies with prescribed surface motion).

In our formulation, we treat the boundary forces in a manner analogous to the discretized pressure. For the
incompressible Navier–Stokes equations, pressure may be viewed as a Lagrange multiplier required to satisfy
the divergence-free constraint. Similarly, boundary forces can be regarded as Lagrange multipliers that satisfy
the no-slip constraint [16]. By introducing regularization and interpolation operators and grouping the pres-
sure and force unknowns together, the discretized incompressible Navier–Stokes equations can in fact be for-
mulated with a structure algebraically identical to the traditional fractional step method. Although previous
research has implemented immersed boundary techniques with the traditional fractional step algorithm, the
entire IBM itself has not been regarded as a fractional step (projection) method, as reported here. We follow
the algebraic approach of Perot [30], where the fractional step method is written as a block-LU decomposition.

In the next section, we review the traditional fractional step method as it is the fundamental basis for our
IBM. In Section 3, we introduce the immersed boundary projection method. This formulation is compared to
previous methods in Section 4; namely the original IBM [31], the direct forcing method [28], the immersed
interface method (IIM) [23], and the distributed Lagrange multiplier (DLM) method [16]. In Section 5, numer-
ical examples are considered to assess the temporal and spatial accuracy of the current method. Flows over
stationary and moving cylinders are simulated and results are compared to previous experimental and numer-
ical studies. Section 6 summarizes the current formulation. Further details on the discretization of the
immersed boundary projection method are placed in the Appendix.
2. Fractional step method

We consider the incompressible Navier–Stokes equations
ou

ot
þ u � ru ¼ �rp þ 1

Re
r2u; ð1Þ

r � u ¼ 0; ð2Þ
where u, p, and Re are the suitably non-dimensionalized velocity vector, pressure, and the Reynolds number,
respectively. Following Refs. [8,37,19,30,6], the equations are discretized with a staggered-mesh finite-volume
formulation using the implicit Crank–Nicolson (CN) integration for the viscous terms and the explicit second-
order Adams-Bashforth (AB2) scheme for the convective terms. This produces an algebraic system of
equations,
A G

D 0

� �
qnþ1

/

� �
¼

rn

0

� �
þ

bc1

bc2

� �
; ð3Þ
where qnþ1 and / are the discretized velocity flux and pressure vectors. The discrete velocity can be recovered
by unþ1 ¼ R�1qnþ1, where R is a diagonal matrix that transforms the discrete velocity into the velocity flux.
Sub-matrices G and D correspond to the discrete gradient and divergence operators, respectively. The oper-
ator resulting from the implicit velocity term is A ¼ 1

Dt M � 1
2
L, where M is the (diagonal) mass matrix and

L is the discrete (vector) Laplacian. We construct the Laplacian to be symmetric, hence making A symmetric
as well. The right-hand side of Eq. (3) consists of the explicit terms from the momentum equation, rn, and
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inhomogeneous terms from the boundary condition, bc1 and bc2. Details on the discretization of Eqs. (1) and
(2) can be found in the Appendix and [30,6]. It is interesting to note that G ¼ �DT for the staggered grid
formulation.

The traditional fractional step method by Chorin [8] and Témam [37] was introduced to solve Eq. (3) in an
efficient manner by using an approximation for A�1. In the present analysis, we adopt the observation made
by Perot [30] that the fractional step method can be regarded as an LU decomposition of Eq. (3):
A 0

�GT GTBN G

� �
I BN G

0 I

� �
qnþ1

/

� �
¼

rn

0

� �
þ

bc1
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� �
þ � DtN

2N ðLM�1ÞN G/

0

 !
; ð4Þ
where BN is the Nth order Taylor series expansion of A�1:
A�1 ffi BN ¼ DtM�1 þ Dt2

2
ðM�1LÞM�1 þ � � � þ DtN

2N�1
ðM�1LÞN�1M�1 ¼

XN

j¼1

Dtj

2j�1
ðM�1LÞj�1M�1: ð5Þ
The last term in Eq. (4) is the leading order error resulting from the truncation in BN. Let us note that BN is
symmetric and can be made positive-definite with appropriate choices of Dt and N [30]. In the current situa-
tion, there also exists a second-order temporal discretization error from the AB2 and CN methods. As dis-
cussed in [30], the fractional step error can be absorbed by the discrete pressure if LM�1 and G are
commutative (for example, in the case of periodic domains); otherwise there remains an Nth order error.

Eq. (4) is more commonly written in three steps:
Aq� ¼ rn þ bc1 ðSolve for intermediate velocityÞ; ð6Þ
GTBN G/ ¼ GTq� þ bc2 ðSolve the Poisson equationÞ; ð7Þ
qnþ1 ¼ q� � BN G/ ðProjection stepÞ: ð8Þ
Since both A and GTBN G are symmetric positive-definite matrices, the conjugate gradient method can be
utilized to solve the above momentum and Poisson equations in an efficient manner. In general, for non-sym-
metric matrices, various other Krylov solvers can be employed.

Here the discrete pressure is denoted by / without any superscript for its time level, as we regard pressure as
a Lagrange multiplier [6]. There has been extensive discussion on the exact time level of the discrete pressure
variable for various treatments of pressure in fractional step methods [36,5]. For the present method, / is a
first-order accurate approximation of pressure in time, vis. pnþ1=2. Since the first-order accuracy of / does
not affect the temporal accuracy of the velocity variable [30], we use / as a simple representation of the pres-
sure variable. If a second-order accurate pressure is desired, Brown et al. [5] should be referred to for further
modifications to the fractional step method.

Although a detailed stability analysis is not offered in this paper, we demonstrate that the present method
described in the next section can stably solve for the flow field for CFL numbers up to 1, as shown in Section 5.
We mention that fractional step methods for incompressible flow can suffer numerical instability if Dt is
decreased arbitrarily [18]. The time step is limited by a lower bound of Dt P cDxlþ1 if equal orders of inter-
polation are used for velocity and pressure, as in the present case (c is a constant and l is the interpolation
order of velocity, here l = 2). While remedies are offered in [18,9], we have not utilized them here since a much
larger Dt is usually selected based on the CFL constraint.

We note in passing that the form of Eq. (3) is known as the Karush–Kuhn–Tucker (KKT) system that
appears in constrained optimization problems [29]. This system minimizes a term similar to the kinetic energy:
min
qnþ1

1

2
ðqnþ1ÞTAqnþ1 � ðqnþ1ÞTðrn þ bc1Þ

� �
subject to Dqnþ1 ¼ 0þ bc2: ð9Þ
It is interesting that the discrete pressure / does not play a direct role in time advancement, but acts as a set of
Lagrange multipliers to minimize the system energy and satisfy the kinematic constraint of divergence-free
velocity field.
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3. Immersed boundary projection method

3.1. The discretized Navier–Stokes equations with boundary force

Since the discretized Navier–Stokes equations, Eq. (3), are observed to be a KKT system with pressure act-
ing as a set of Lagrange multipliers to satisfy the continuity constraint, one can imagine appending additional
algebraic constraints by increasing the number of Lagrange multipliers. Hence we incorporate the no-slip con-
straint from the IBM into the fractional step framework.

The IBM introduces a set of Lagrangian points, nk, that represent the surface, oB, of an immersed object,
B, within a computational domain, D, whose geometry need not conform to the underlying spatial grid. At
the Lagrangian points, appropriate surface forces, fk, are applied to enforce the no-slip condition along oB.
Fig. 1 illustrates the setup of the spatial discretization. Since the location of the Lagrangian boundary points
does not necessarily coincide with the underlying spatial discretization, two operators are required: one that
passes information from the boundary points to the neighboring staggered grid points and another one that
conveys information in the opposite direction.

We consider the continuous version of the incompressible Navier–Stokes equations and explain how the
IBM can be discretized into a KKT system and solved with a fractional step/projection algorithm. The incom-
pressible Navier–Stokes equations with a boundary force, f, and the no-slip condition can be considered as the
continuous analog of the IBM
Fig. 1.
depicte
Pressu
bound
ou

ot
þ u � ru ¼ �rp þ 1

Re
r2uþ

Z
s

fðnðs; tÞÞdðn� xÞds; ð10Þ

r � u ¼ 0; ð11Þ

uðnðs; tÞÞ ¼
Z

x

uðxÞdðx� nÞdx ¼ uBðnðs; tÞÞ; ð12Þ
where x 2 D and nðs; tÞ 2 oB. The boundary oB, parametrized by s, is allowed to move at a velocity
uBðnðs; tÞÞ. Convolutions with the Dirac delta function d are used to allow the exchange of information from
oB to D and vice versa in Eqs. (10) and (12), respectively.

The discretization of the above system results in
A G �H

D 0 0

E 0 0

264
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Staggered grid discretization of a two-dimensional computational domain D and immersed boundary formulation for a body B

d by a shaded object. The horizontal and vertical arrows (!; ") represent the discrete ui and vi velocity locations, respectively.
re pj is positioned at the center of each cell (·). Lagrangian points, nk ¼ ðnk ; gkÞ, along oB are shown with filled squares (n) where
ary forces fk ¼ ðfx;k ; fy;kÞ are applied ();*).
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where Hf corresponds to the last term in Eq. (10) with f ¼ ðfx; fyÞT. Similar to the discrete pressure, we do not
place a superscript for time level on f to emphasize its role as a Lagrange multiplier. The no-slip condition, Eq.
(12), is enforced using the constraint, Eqnþ1 ¼ unþ1

B . Here A, G, and D are the implicit operator for the velocity
flux, the discrete gradient operator, and the discrete divergence operator, respectively, and rn, bc1, and bc2 are
the explicit terms in the momentum equation, the boundary condition vector resulting from the Laplacian
operator, and the boundary condition vector generated from the divergence operator, respectively. Note that
these sub-matrices and vectors (A, G, D, rn, bc1, and bc2) are identical to those that appear in the traditional
discretization, Eq. (3).

The two additional sub-matrices H and E are introduced to regularize (smear) the singular boundary force
over a few cells and interpolate velocity values defined on the staggered grid onto the Lagrangian points,
respectively. We will refer to these sub-matrices as regularization (H) and interpolation (E) operators. The pre-
cise expressions of these operators are discussed below and details on the overall discretization are provided in
the Appendix.
3.2. Interpolation and regularization operators

The operators H and E are constructed from the regularized discrete delta function. Among the variety
of discrete delta functions available, we choose to use the one by Roma et al. [34] which is specifically
designed for its use on staggered grids (where even/odd de-coupling does not occur). This function has
the form:
dðrÞ ¼

1
6Dr 5� 3 jrjDr �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3 1� jrjDr

� �2

þ 1

r" #
for 0:5Dr 6 jrj 6 1:5Dr;

1
3Dr 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3 r

Dr

	 
2 þ 1
q� �

for jrj 6 0:5Dr;

0 otherwise;

8>>>>>><>>>>>>:
ð14Þ
where Dr is the cell width of the staggered grid in the r-direction. This discrete delta function is supported over
only three cells, which is an advantage for computational efficiency. We have not found significant differences
in the results for the current formulation with alternative discrete delta functions. Refs. [33,3] may be con-
sulted for a variety of delta functions.

As observed by Peskin [31] and Beyer and LeVeque [3], discrete delta functions can be used both for reg-
ularization and interpolation. The interpolation operator can be derived from discretizing the convolution of u

and d,
uðnÞ ¼
Z

x

uðxÞdðx� nÞdx ð15Þ
yielding
uk ¼ DxDy
X

i

uidðxi � nkÞdðyi � gkÞ ð16Þ
for the two-dimensional case, where ui is the discrete velocity vector defined on the staggered grid ðxi; yiÞ and uk

is the discrete boundary velocity at the kth Lagrangian point ðnk; gkÞ. For the three-dimensional case an extra
factor of Dzdðzi � fkÞ is needed. Letting a denote the factor preceding the summation, the interpolation oper-
ator for Eq. (16) can be written as
Êk;i ¼ adðxi � nkÞdðyi � gkÞ; ð17Þ

so that the no-slip condition is represented by
Êk;iunþ1
i ¼ Ek;iqnþ1

i ¼ unþ1
B ; ð18Þ
k
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where E � ÊR�1 to allow the use of the flux, qnþ1 ¼ Runþ1, from the fractional step formulation. The hat is used
to represent the original operator and is removed once a transformation (e.g. R�1) is applied.

Similarly, the regularization operator is a discrete version of the convolution operator in Eq. (10) that
passes information from the Lagrangian points, nk, to the neighboring staggered grid points, xi. Defining
H in a manner similar to E, we obtain
Hi;k ¼ bM̂ idðnk � xiÞdðgk � yiÞ ¼
b
a

M̂ iÊT
k;i; ð19Þ
where b is the numerical integration factor proportional to ds. Note that a diagonal matrix M̂ is included for
consistency with the fractional step formulation. It should be observed that E and H are symmetric up to a
constant if the diagonal matrices R�1 and M̂ are absent.

Next, let us achieve symmetry between the (3,1) and (1, 3) block entries in the presence of R�1 and M̂ in Eq.
(13). We absorb the offset in scaling into the unknown boundary force by introducing a transformed forcing
function ~f that satisfies
Hf ¼ �ET~f : ð20Þ

The original boundary force can be retrieved by f ¼ �invðEHÞEET~f . In the case of using a uniform Cartesian
grid with Dx ¼ Dy, the relation simplifies to f ¼ � 1

Dx2
a
b

~f .
The discrete delta function of Eq. (14) currently requires the use of a uniform grid in the vicinity of oB to

satisfy a set of properties (e.g. moment conditions) [34]. Since the range and domain of E and H are only lim-
ited to the neighborhood of oB, non-uniform discretization can still be applied away from the body. Although
it is not pursued here, it would be interesting to generate discrete delta functions that are suitable for a non-
uniform spatial discretization around the immersed body.

Note that symmetry between E and H is not necessary for discretization, but it allows us to solve the overall
system in an efficient manner. There are unexplored possibilities using different discrete delta functions for
interpolation and regularization operators. Beyer and LeVeque [3] consider such cases in a one-dimensional
model problem.
3.3. Immersed boundary method via projection

Now that we have formulated the sub-matrices G and D such that D ¼ �GT and introduced a transformed
force, ~f , the overall system of equations, Eq. (13), becomes
A G ET

GT 0 0

E 0 0

264
375 qnþ1

/
~f

0B@
1CA ¼ rn

0

unþ1
B

0B@
1CAþ bc1

�bc2

0

0B@
1CA: ð21Þ
As previously discussed, both the discrete pressure and boundary forcing functions are Lagrange multipli-
ers and, algebraically speaking, it is no longer necessary to make a distinction between the two. Thus organiz-
ing the sub-matrices and vectors in Eq. (21) in the following fashion:
Q � ½G; ET�; k �
/
~f

� �
; r1 � rn þ bc1; r2 �

�bc2

unþ1
B

� �
; ð22Þ
Eq. (21) can be simplified to a KKT system
A Q

QT 0

� �
qnþ1

k

� �
¼

r1

r2

� �
; ð23Þ
which is now in a form identical to Eq. (3), providing motivation to apply the same fractional step technique in
solving the overall system as in Section 2. Performing an LU decomposition of Eq. (23),
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þ � DtN
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 !
: ð24Þ
As in the original fractional step method, there is an Nth order splitting error. Note that this error cannot be
absorbed by the Lagrange multiplier, k, because LM�1 and Q do not commute (even for periodic domains).
Hence, a third-order expansion for BN is recommended, as discussed in [30] and Section 5.

Thus, the immersed boundary projection method consists of the same three steps as Eqs. (6)–(8) but with k
replacing / and Q replacing G:
Aq� ¼ r1 ðSolve for intermediate velocityÞ; ð25Þ
QTBN Qk ¼ QTq� � r2 ðSolve the modified Poisson equationÞ; ð26Þ
qnþ1 ¼ q� � BN Qk ðProjection stepÞ: ð27Þ
The main differences between the present and the traditional fractional step methods are in the Poisson equa-
tion and the projection step. Here, the pressure and boundary force are determined implicitly from the mod-
ified Poisson equation. The projection step removes the non-divergence-free and slip components of the
velocity from the intermediate velocity field in one step. The numerical constraint of no-slip exists only at
the Lagrangian points, hence making the dimensions of H and ~f considerably smaller than those of G and
/. Thus it is encouraging that there is no significant increase in size of QTBN Q in the modified Poisson equation
from GTBN G in the classical fractional step method.

We can still solve Eqs. (25) and (26) with the conjugate gradient method as both left-hand side operators are
symmetric and positive-definite. Some care must be taken to make QTBN Q positive-definite and well-condi-
tioned. First, as in the traditional fractional step method, one of the discrete pressure values must be pinned
to a certain value to remove the zero eigenvalue.1 Second, no repeating Lagrangian points are allowed to avoid
QTBN Q from becoming singular. Also, to achieve a reasonable condition number and to prevent penetration of
streamlines caused by a lack of Lagrangian points, the distance between adjacent Lagrangian points, Ds, is set
approximately to the Cartesian grid spacing.

In the case of moving immersed bodies, the location of the Lagrangian points must be updated at each time
and so must E, i.e.
Ek;i ¼ Enþ1
k;i ¼ Eðnkðtnþ1Þ; xiÞ ð28Þ
and similarly for H. These operators can be pre-computed at each time step by knowing the location of the
Lagrangian points a priori. The current technique is not limited to rigid bodies and can model flexible moving
bodies if we are provided with the location of oB at time level n + 1. For deforming bodies, the volume of the
body must be isochoric to satisfy the incompressibility constraint. The current formulation treats the density
of the body and the outer fluid to be equal to each other.
4. Comparison with other immersed boundary methods

Let us compare our current formulation with a few other IBMs, in particular the original IBM [31], the
direct forcing approach [28,15], the IIM [23], and the DLM method [16] to clarify the fundamental differences.
Since we only select a few IBMs that are most similar to the current formulation, Refs. [33,27] should be con-
sulted for additional IBMs. The same notation introduced earlier is used in this section. Because the compar-
ison of fundamental mechanisms for satisfying the no-slip condition along the immersed boundary is of
interest here, we consider methods for simulating both rigid and elastic bodies. Some details such as the time
integration schemes, the updating algorithms for the Lagrangian points, and the constitutive relations for the
ere are alternatives to pinning the solution of the modified Poisson equation. Bochev and Lehoucq [4] discuss such techniques in
for the Poisson equation with a Neumann boundary condition. Although the current staggered grid formulation does not require
plicit pressure boundary conditions, their analysis provides insight into the algebraic properties of the discretized Poisson equation.
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boundary forces are omitted for clarity of discussion. The discrete spatial operators and the temporal treat-
ment of the discrete pressure variable may not be identical to our version but remain conceptually similar.

4.1. The original immersed boundary method (IBM)

The original IBM [31] is a modification to the traditional fractional step method, Eqs. (6)–(8), to simulate
flow over a flexible body. An explicit boundary force term Hf n computed with Hooke’s law is added to the
right-hand side of the momentum equation
Aq� ¼ rn þ bc1 þ Hf n; ð29Þ
GTBN G/ ¼ GTq� þ bc2; ð30Þ
qnþ1 ¼ q� � BN G/: ð31Þ
At every time step, the location of the Lagrangian points on the elastic surface is updated. Although it is not
considered here, a source/sink can be added to the pressure Poisson equation to apply a correction to the con-
tinuity equation [20].

Let us discuss how the original IBM may conceptually be related to our method. Hooke’s law can be writ-
ten as: f ¼ jðne � nÞ, where j is the spring constant and ne is the equilibrium position for the boundary sur-
face. If we are to differentiate and discretize this relation, we obtain:
f nþ1 � f n

Dt
¼ jðunþ1

B � Eqnþ1Þ; ð32Þ
using the implicit Euler time discretization. Adding the boundary force to the momentum equation, we ob-
serve that the overall system has the form:
A G �H

D 0 0

E 0 1
jDt I

264
375 qnþ1

/

f nþ1

0B@
1CA ¼ rn þ bc1

bc2

unþ1
B þ 1

jDt f n

0B@
1CA: ð33Þ
For rigid body simulations, j� 1 is chosen to reduce the effect from the (3, 3) sub-matrix [3,22]. In the limit of
j!1, we recover our current formulation, Eq. (13). The above formulation, Eq. (33), has a structure iden-
tical to the artificial compressibility method [7] that approximately satisfies the continuity equation with:
1
a2

op
ot þr � u ¼ 0, where a is an artificial speed of sound. This artificial parameter is typically set to a large value

similarly to the spring constant, j, in Eq. (33). Instead of Hooke’s law, a feedback controller
(f ¼ �j1

R t
0

uðn; sÞds� j2uðn; tÞ) with large gains (j1 � 1 and j2 � 1) has also been used to compute the
boundary force [17], which results in an identical structure to Eq. (33).

However, large gains used in such constitutive relations add stiffness to the governing system, thus prohib-
iting the use of high CFL numbers. For instance, CFL numbers used in [22,17] are Oð10�3Þ to Oð10�1Þ for
simulations of flow over a rigid circular cylinder. It is possible to use higher CFL numbers by lowering the
gains at the expense of relaxing the no-slip condition. In contrast, the current projection method solves for
the boundary force implicitly with no constitutive relations and behaves similarly to the traditional fractional
step method in terms of temporal stability. Hence simulations can be performed with CFL numbers as high as
1, which is reported later in Section 5. In previous methods, it is not clear how the gains or the magnitude of
the forcing function relate to how well the no-slip condition is satisfied. On the other hand, our method sat-
isfies the continuity equation and the no-slip condition exactly to machine precision or, if desired, to a pre-
scribed tolerance.

4.2. The direct forcing method

The direct forcing method [28] approximates the boundary force for rigid bodies with an intermediate
velocity field q*. The force is not actually computed but implemented directly into the momentum equation
by substituting the regularized no-slip condition near the immersed boundary. Conceptually speaking, the
momentum equation, Eq. (25), is modified to yield
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ð eM � HEÞAq� þ 1

Dt
HEq� ¼ ð eM � HEÞðrn þ bc1Þ þ

1

Dt
Hunþ1

B ; ð34Þ

GTBN G/ ¼ GTq� þ bc2; ð35Þ
qnþ1 ¼ q� � BN G/: ð36Þ
Here HE interpolates and then regularizes a vector, which acts as a filtering operator to extract the velocity

field near oB. A diagonal mass matrix eM is placed for scaling such that eM � HE 	 0 near oB. Factors of
1=Dt are inserted in Eq. (34) to keep the order with respect to Dt consistent (note that A ¼ Oð1=DtÞ). Concep-
tually, the above equation becomes Eq� ¼ unþ1

B near the immersed boundary and reduces to Aq� ¼ ðrn þ bc1Þ
away from the body. The difference between the modified momentum equation, Eq. (34), and the momentum
equation from the traditional fractional step method, Eq. (6), can be expressed as the boundary force for the
direct forcing method:
f nþ1 ¼ unþ1
B � Eq�

Dt
þ EAq� � Eðrn þ bc1Þ: ð37Þ
Note that this method enforces the no-slip condition on q* but not on qnþ1. A projection step is applied later
to project the intermediate velocity, q*, onto the solenoidal solution space. In order to satisfy the no-slip con-
dition exactly, iterations over the entire fractional step algorithm is required for each time level. Although slip
in qnþ1 is reported to be small [15], the magnitude of the error cannot be estimated in a deductive manner.

4.3. The immersed interface method (IIM)

Next, we consider representing the IIM [23] for elastic membranes in an algebraic form. In the IIM, the
boundary force is decomposed into tangential and normal components (fs and fn, respectively). A regularized
tangential component of the force, Hf n

s , is included in the momentum equation as an explicit term and the
explicit normal boundary force is implemented into the pressure Poisson equation in terms of a pressure jump
condition across the interface. The overall method can be described as
Aq� ¼ rn þ bc1 þ Hf n
s ; ð38Þ

GTBN G/ ¼ GTq� þ bc2 þ GTBN bðf n
n Þ; ð39Þ

qnþ1 ¼ q� � BN ðG/� bðf n
n ÞÞ; ð40Þ
where b ¼ bðf n
n ðsptÞÞ is a corrective term to calculate the pressure gradient (G/� b) taking the jump condi-

tion, spt, into consideration. Since the normal component of the boundary force is implemented directly into
the pressure Poisson equation rather than in the momentum equation, a sharp velocity solution in the vicinity
of the interface can be achieved resulting in second-order spatial convergence for some test problems. How-
ever, the construction of the correction term b requires explicit knowledge of the boundary force, and is not
easily made implicit as desired in our formulation.

We note in passing that Linnick and Fasel [24] recently developed a high order IIM that employs one-sided
finite differences to obtain jump conditions for higher-order derivatives. Their results along with other numer-
ical and experimental studies for flow over a stationary cylinder are compared to our results in Section 5.
4.4. The distributed Lagrange multiplier (DLM) method

The most similar method to our formulation is the DLM method by Glowinski et al. [16] used in a vari-
ational principle (finite element) framework. Their work is closely related to ours as they introduce Lagrange
multipliers (i.e. body force) on the immersed rigid body to satisfy the no-slip condition, essentially through
projection. The main difference between our formulation and the DLM method lies in how the projection
is applied to the velocity field.

Conceptually speaking, we consider the DLM method as a different operator splitting applied to Eq. (13).
Their overall system is solved with the Marchuk–Yanenko fractional step scheme [39,26] that decomposes the
overall operations into three operators related to: (i) the divergence-free condition and pressure, (ii) the con-
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vective and diffusive operators, and (iii) the no-slip condition and boundary force. Because the projection
operators that remove the non-divergence-free and no-slip conditions are applied separately at different
sub-time levels, these two constraints cannot be simultaneously satisfied by the velocity field.

In our formulation, there is only one projection step that simultaneously removes both the non-divergence-
free and slip component from the velocity field. We also note that our formulation achieves second-order accu-
racy in time by choosing a suitable approximation for A�1.

4.5. Short summary on the comparisons

In the first three approaches, the presence of an immersed object is treated as a corrective term to account
for the no-slip condition. The fundamental difference between the aforementioned methods and our formula-
tion is the implicit treatment of both the pressure and boundary force as a single set of Lagrange multipliers in
the modified Poisson equation. Once the pressure and the force are determined, the continuity equation and
the no-slip condition are satisfied through a projection at the same time level in our formulation. The DLM
method is found to be the most similar method but differs in how the projections are applied. Our overall IBM
is viewed as a projection method to allow further generalization and numerical investigation from an algebraic
point of view.

5. Results

We numerically investigate the temporal and spatial convergence of the current method in one- and two-
dimensional model problems; namely the Stokes’ problem and flow inside two concentric cylinders, respectively.
Also, flow over a circular cylinder is considered to validate the current method in steady-state and transient flow.
At last, a moving body example of an impulsively started circular cylinder is considered.

Since the present method is a combination of the immersed boundary and the fractional step methods, we
expect convergence analyses from both methods to carry over to the current formulation. The temporal accu-
racy of the immersed boundary projection method should follow the analysis from the fractional step algo-
rithm as shown in Eq. (24). In all of the problems below, second-order finite-volume discretization (except
for H and E) is applied. For the problems of flow over a cylinder, a non-uniform grid is employed, making
the scheme formally first-order accurate. However, we suppress the first-order spatial error by using a very
smooth grid stretching, effectively keeping the overall error to second-order. In the vicinity of the body, the
spatial grid is kept uniform with its finest resolution and Dxmin ¼ Dymin 	 Ds. Unless stated otherwise,
N = 3 is chosen for approximating A�1.

5.1. One-dimensional Stokes’ problem

We first assess the accuracy of the current method using a one-dimensional Stokes’ problem where an infi-
nitely long flat plate is impulsively set into motion with uwall ¼ 1 in an initially quiescent viscous fluid with
m = 1 (Fig. 2). The initial condition for the simulation is set to the exact solution to the Stokes’ problem after
Fig. 2. Setup for the one-dimensional Stokes’ problem.
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a finite time of t0 ¼ 0:1 has elapsed in order to avoid the temporal discontinuity due to the impulsive start from
interfering with the convergence study. Simulations are performed in a periodic computational domain in both
x- and y-directions with uniform grid discretization. The top and bottom boundaries are placed far enough to
avoid periodicity from interfering with the velocity profile near the translating plate. Spatial and temporal con-
vergence is analyzed in terms of the L1 and L2 norms of the horizontal velocity error, ej ¼ uðyjÞ � uj, over the
domain yj 2 ½0; 1� (in non-dimensional length: yj=

ffiffiffiffiffiffi
mt0

p 2 ½0; 3:162�).
Fig. 3a assesses the temporal L1 error for various sizes of non-dimensional time steps, mDt=Dy2. The error

was computed by comparing the solution to a temporally refined reference solution at fixed grid resolution to
isolate the spatial discretization error. We calculate the error at t ¼ 0:11 with Dy ¼ 10�2. The three conver-
gence curves on the plot result from the use of different orders of expansion N for BN (	A�1). Note that
the splitting error from Eq. (24) is larger in magnitude than the underlying second-order error resulting from
the time integration schemes. Hence this splitting error directly influences the temporal accuracy for the range
of Dt considered. As discussed in Perot [30], the splitting error cannot be absorbed by k because LM�1 and Q

are not commutative even for a periodic domain.
Next we perform simulations with a very fine time step (Dt ¼ 10�6) and compare the results to the exact

solution at t ¼ 0:101 for varying Dy. The velocity profile in the vicinity of the plate is influenced by the reg-
ularization of the Dirac delta function. This alters the velocity derivative at the immersed boundary causing
the first-order accuracy of the L1 norm as shown in Fig. 3b. Fortunately, this smearing effect is dominant only
in close proximity of the plate and the underlying second-order convergence is achieved in the L2 sense.

5.2. Flow inside two concentric cylinders

For a two-dimensional test problem, we simulate flow between two concentric hollow cylinders with radii
r1 ¼ 1=2 and r2 ¼ 1 as well as the flow inside the smaller cylinder as shown in Fig. 4. The outer cylinder is held
stationary while the inner cylinder is rotated with angular velocity X,
Fig. 3.
A�1; N
X ¼ uhðr1Þ
r1

¼ 1þ tanh
t � 0:2

0:05

� �
; ð41Þ
moving the initially quiescent fluid at t = 0. We take a periodic computational domain of size
½�1:05; 1:05� 
 ½�1:05; 1:05� with uniform spatial resolution and compute the azimuthal velocity error,
ej ¼ uhðrjÞ � uh;j, over rj 2 ½0; r2� (including flow inside the inner cylinder) reporting the L1 and L2 norms.

We study the impact of the splitting error from Eq. (24) on the temporal convergence by comparing our
results to a reference solution obtained with a very fine time step, Dt ¼ 5
 10�6, and spatial resolution,
Dx ¼ Dy ¼ 2:1
 10�2. The spatial resolution is kept constant and viscosity is set to m = 1. Fig. 5a shows that
the order of expansion N for A�1 again influences the behavior of convergence in a fashion similar to the one-
dimensional case. As it can be seen from the N = 3 case, the second-order time integration error starts to affect
Error norms from the one-dimensional Stokes’ problem. (a) Temporal L1 norm errors with different orders of expansion, N, for
= 1: s, N = 2: h, and N = 3: n. (b) The L1: s and L2: h spatial velocity error norms.



Fig. 4. Setup for the problem of two concentric cylinders (inner cylinder rotates with angular velocity X).

Fig. 5. Error norms from the problem of two concentric cylinders. (a) Temporal L1 norm errors with different orders of expansion, N, for
A�1; N = 1: s, N = 2: h, and N = 3: n. (b) The L1: s and L2: h spatial velocity error norms. (c) The L1: s and L2: h spatial pressure
error norms.
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the total error at the smallest shown time step. Based on both the one- and two-dimensional test problems, we
recommend the use of third-order expansion N for practical problems. There also is an advantage in choosing
N = 3 for achieving positive-definiteness of the modified Poisson equation with larger choice of Dt [30].

Next we consider the spatial accuracy of our method at steady-state by comparing our results to the exact
solution. The viscosity is reduced to m ¼ 0:01 to use a fine Dx while satisfying mDt=Dx2 K 1 to keep BN positive-
definite. Fig. 5b shows the rate of decay for the spatial errors to be 1 and about 1.5 in the L1 and the L2 sense.
Although the first-order convergence is expected from the use of discrete delta functions, further investigation
is required to explain why second-order accuracy from the underlying spatial discretization cannot be achieved
in an L2 measure.

The spatial accuracy of the pressure is also studied by comparing the current solution to the exact solution
at steady-state. Because the pressure based on the current scheme only solves up to a constant (since we pin the
pressure to remove the zero eigenvalue), we compare the solutions by matching the pressure at r = 0 for all
cases and compute the error norms along the x-axis from 0 to r1. The infinity and L2 error norms are plotted
against the grid size in Fig. 5c for the same problem considered in assessing the spatial accuracy of velocity. As
expected, the spatial accuracy follows the same trend as the velocity shown in Fig. 5b. Due to the presence of
the discrete Delta function along the immersed boundary, the pressure distribution is affected limiting the spa-
tial accuracy to orders of one and about 1.5 for the infinity and L2 norms, respectively.

5.3. Flow over a stationary cylinder

We consider flow over a circular cylinder as another test problem because the dimensions of the recircula-
tion zone and the force on the cylinder at various Reynolds numbers are readily available from previous exper-
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imental and numerical studies. For the numerical studies, we list results from the IBM of Lai and Peskin [22]
and the IIM of Linnick and Fasel [24] among others when the data are available. Our two-dimensional sim-
ulations are performed by introducing a cylinder of diameter d = 1 in a large computational domain D with
initially uniform flow, u ¼ u1 ¼ 1. Reynolds numbers of Re ¼ u1d=m ¼ 20, 40, and 200 are chosen for vali-
dating the current method at steady-state and periodic vortex shedding conditions (m is the kinematic
viscosity).

The computational domain is discretized non-uniformly in both x- and y-directions, while the grid spacing
is kept uniform with its finest size (Dxmin) in the vicinity of the cylinder. Table 1 summarizes the parameters
used in the simulations, where nx and ny are the number of cells in the x- and y-directions and nB is the number
of Lagrangian points on the surface of the cylinder with Ds 	 Dxmin ¼ Dymin. Computations are performed
with different sizes of D to ensure that the boundary conditions along oD do not influence our solution. Left
(inflow) and lateral boundary conditions along oD are set to uniform flow of ðu; vÞ ¼ ðu1; 0Þ and are placed far
away from the cylinder. At the outlet, the convective boundary condition (ou=ot þ u1ou=ox ¼ 0) is applied to
allow vorticity to exit the domain freely. Various spatial and temporal resolutions are chosen to ensure that
reliable solutions are obtained. We record the maximum CFL number (CFLmax ¼ umaxDt=Dxmin) in Table 1
from cases of Re = 40 and Re = 200. Note that the current method yields a stable solution even with
CFLmax ¼ 0:81.

For comparison, we compute the force on the body applied by the flow in terms of the drag and lift coef-
ficients: CD � F x=

1
2
qu2
1d and CL � F y=

1
2
qu2
1d, respectively, where qu2

1d ¼ 1. The force on the cylinder, F, can
be obtained simply by
Table
Param

Case A
Case B
Case C
Case D

The m
FðtÞ ¼
F xðtÞ
F yðtÞ

� �
¼ �

Z
x

Z
s

fðnðs; tÞÞdðnðs; tÞ � xÞdsdx 	 �
X

i

H i;kfkDxDy ð42Þ
using the regularization operator and the boundary forcing function. Summation over i is implied to take
place separately for each direction of the force vector.

First, simulations are performed for Re = 20 and 40 to validate the steady-state characteristics. The result-
ing wake dimensions and drag coefficients are compared to values reported in the literature. The size of the
wake is characterized by l, a, b, and h (appropriately non-dimensionalized by the diameter) defined in
Fig. 6 following the notation used in Coutanceau and Bouard [12]. The parameters, l, a, and b represent
the length of the recirculation zone, distance from the cylinder to the center of the wake vortex, and the
gap between the centers of the wake vortices, respectively. The separation angle is denoted by h measured from
the x-axis. The steady-state vorticity contours and streamlines from Case B are shown in Fig. 7 for Re = 20
and 40. The flow profiles are in close agreement with those reported in the literature. The wake properties from
Cases A and B are compared against previous experimental and numerical studies in Table 2 and are also
found to be in accord.

Next, we consider flow over a cylinder at a Reynolds number of 200 to reproduce periodic vortex shedding.
A short time after simulations are initiated from uniform flow, a perturbation in a form of an asymmetric
body force is added to trigger the shedding instability. Numerical results replicate the periodic shedding of
vortices to form the Kármán vortex street as shown in the vorticity contour of Fig. 8. The resulting lift
and drag coefficients and the Strouhal number, St � fsd=u1, where fs is the shedding frequency, are compared
to previous studies in Table 3. Results obtained from Cases B–D are found to be in good agreement with pre-
vious findings.
1
eters for spatial and temporal discretization used in the simulations

nx 
 ny D Dxmin Dt CFLmax nB

150
 150 ½�30; 30� 
 ½�30; 30� 0.04 0.005 0.22* 78
300
 300 ½�30; 30� 
 ½�30; 30� 0.02 0.005 0.46* 157
300
 300 ½�15; 45� 
 ½�30; 30� 0.0333 0.0125 0.81� 94
300
 300 ½�10; 10� 
 ½�30; 30� 0.0333 0.0125 0.75� 94

aximum CFL numbers are reported from Re = 40 (*) and Re = 200 (�) cases.



a

b
θ

l

Fig. 6. Definition of the characteristic dimensions of the wake structure.
Results from Case D compared to Cases B and C suggest that the placement of the outflow boundary is not
too critical. As a pair of positive and negative vortices convect downstream, their effect on the cylinder become
less important since their far-field induced velocity would appear to cancel. On the other hand, we have
observed pronounced interference from the lateral boundary conditions when the height of the computational
domain is shortened.



Table 2
Comparison of experimental and numerical studies of steady-state wake dimensions and drag coefficient from flow over a cylinder for
Re = 20 and 40

l=d a=d b=d h CD

Re ¼ 20 Coutanceau and Bouard [12]* 0.93 0.33 0.46 45.0� –
Tritton [38]* – – – – 2.09
Dennis and Chang [14] 0.94 – – 43.7� 2.05
Linnick and Fasel [24] 0.93 0.36 0.43 43.5� 2.06
Present (Case A) 0.97 0.39 0.43 44.1� 2.07
Present (Case B) 0.94 0.37 0.43 43.3� 2.06

Re ¼ 40 Coutanceau and Bouard [12]* 2.13 0.76 0.59 53.8� –
Tritton [38]* – – – – 1.59
Dennis and Chang [14] 2.35 – – 53.8� 1.52
Linnick and Fasel [24] 2.28 0.72 0.60 53.6� 1.54
Present (Case A) 2.33 0.75 0.60 54.1� 1.55
Present (Case B) 2.30 0.73 0.60 53.7� 1.54

Experimental studies are listed with (*).

Fig. 8. Snapshot of the vorticity field with contour levels from �3 to 3 in increments of 0.4 for Re = 200.

Table 3
Comparison of Strouhal number and coefficients of drag and lift for flow over cylinder from experimental and numerical studies at
Re = 200

St CD CL

Re ¼ 200 Belov et al. [2] 0.193 1.19 ± 0.042 ±0.64
Liu et al. [25] 0.192 1.31 ± 0.049 ±0.69
Lai and Peskin [22] 0.190 – –
Roshko [35]* 0.19 – –
Linnick and Fasel [24] 0.197 1.34 ± 0.044 ±0.69
Present (Case B) 0.196 1.35 ± 0.048 ±0.68
Present (Case C) 0.195 1.34 ± 0.047 ±0.68
Present (Case D) 0.197 1.36 ± 0.043 ±0.69

Experimental study is listed with (*).
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5.4. Flow around a moving cylinder

As our last test problem, we simulate flow around a circular cylinder in impulsive translation to validate the
present method for moving bodies. The simulation is performed by moving the Lagrangian body points at



Fig. 9. Snapshots of the vorticity field around an impulsively moving circular cylinder for Re = 40 and 200 at non-dimensional time of
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each time step. As these points shift their positions in time, the regularization and interpolation operators are
updated according to Eq. (28). We initially position the cylinder with unit diameter (d = 1) at the origin and
impulsively set it into motion to the left with a constant velocity of u0 ¼ �1. Results are presented for Rey-
nolds numbers of Re ¼ ju0jd=m ¼ 40 and 200.

The computational domain D is taken to be ½�16:5; 13:5� 
 ½�15; 15� with no-slip boundary condition
applied along oD. Non-uniform grid is used with uniform grid in the near field having a resolution of
Dxmin ¼ 0:02 resulting in a grid size of 425
 250. A constant time step of Dt ¼ Dxmin=2 is chosen such that
the maximum CFL numbers are limited to 0.98 and 0.81, respectively for Re = 40 and 200 during the simu-
lation from a non-dimensional time of t� � ju0jt=d ¼ 0 to 3.5. Quiescent flow is used for the initial condition.

We present snapshots of the flow field at non-dimensional time of t� ¼ 1, 2.5, and 3.5 in Fig. 9. Left and
right figures illustrate the vorticity field for Re = 40 and 200, respectively. The flow fields are in agreement with
those in [13,21] for Re = 40. For Re = 200, the flow exhibits a generation of stronger vortex pair in the wake of



Fig. 10. History of the drag coefficient of the body for Re = 40 and 200 (—) compared with numerical solutions from Koumoutsakos and
Leonard [21] (Re = 40, - - -) and Cottet et al. [11] (Re = 200, – -–) and analytical solution by Bar-Lev and Yang [1] (� � �) valid for early time.
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the cylinder. In the two cases, the solutions are resolved well even near the boundary and the difference in the
effect of viscous diffusion is nicely captured.

The drag coefficients for the two cases are also computed by Eq. (42) during the simulation and are plotted
in Fig. 10. Computational results based on vortex methods from [21,11] along with the analytical series solu-
tion [1] valid for early time are superposed on the current results. The current scheme reveals the singular
behavior of the drag at the start up time ðOð1=

ffiffiffiffi
t�
p
ÞÞ experienced by the cylinder due to the impulsive motion

[1]. Our drag coefficients are about 4–5% larger than those from the vortex method. Additional simulations
were performed with smaller grid spacings and larger computational domains. However, there were no noti-
cable changes in our solutions to account for the difference.

We also measure the length of the recirculation zone, previously defined as l=d in Fig. 6, in the frame of
reference of the cylinder ðu� u0; vÞ for validation over time. In Fig. 11, these lengths are compared with
the reported curves from a numerical study of [10] and experimental findings of [13] and are found to be in
excellent agreement shown by the overlaps for both Reynolds numbers.
Fig. 11. Length of the recirculation zone, l=d, in the frame of reference of the moving cylinder as a function time, t*, for (a) Re = 40 and
(b) Re = 200 compared with previous studies. Present results: —; experimental measurements of Coutanceau and Bouard [13] (Re = 40,
- - -); and numerical study of Collins and Dennis [10] (Re = 200, – -–).
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6. Conclusion

We presented a new formulation of the immersed boundary method that is algebraically identical to the
traditional fractional step algorithm. The current method introduces regularization and interpolation opera-
tors and regards both the pressure and boundary force as Lagrange multipliers required to satisfy the kine-
matic constraints of divergence-free and no-slip. The no-slip condition along the immersed surface is
satisfied by a projection in a manner analogous to the removal of non-divergence-free component of the veloc-
ity field in the classical projection methods. The overall method is constructed to preserve symmetry and posi-
tive-definiteness to efficiently solve for the flow field. The boundary force is determined implicitly without any
constitutive relations for the rigid body formulation. This in turn allowed us to use a CFL number as high as 1
in our simulations. Deforming bodies whose motion is known a priori can also be treated. The current scheme
is numerically found to be third-order temporally accurate for most practical sizes of time steps and second-
order accurate in time for small time steps. The spatial accuracy is observed to be better than first-order in the
L2 norm for one- and two-dimensional problems. Results from simulations of flow over both stationary and
moving cylinders show excellent agreement with previous experimental and numerical studies.
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Appendix. Derivation of Eq. (13)

This appendix describes the details on how the incompressible Navier–Stokes equations Eqs. (10)–(12) are
discretized on a finite-volume staggered mesh to reach the form of Eq. (13). A two-dimensional case is pre-
sented, although an extension to three dimensions is straightforward. Here, the underlying spatial discretiza-
tion is taken to be a non-uniform Cartesian staggered mesh ðxi; yjÞ with the immersed surface represented by a
set of Lagrangian points ðnk; gkÞ as shown previously in Fig. 1. Readers can also consult the works of [30,6] for
details on the fractional step method for staggered grid formulation.

The incompressible Navier–Stokes equations with a boundary forcing function, Eqs. (10)–(12), can be dis-
cretized with the AB2 and CN methods for the convective and viscous terms, respectively:
unþ1 � un

Dt
þ 3

2
N̂ðunÞ � 1

2
N̂ðun�1Þ ¼ �Ĝ/þ 1

2
L̂ðunþ1 þ unÞ þ b̂c1 þ Ĥf ; ð43Þ

D̂unþ1 ¼ bc2; ð44Þ
Êunþ1 ¼ unþ1

B ; ð45Þ
where unþ1, /, and f are the discrete velocity, pressure, and boundary force. We order the discrete velocity and
force vectors, ðu; vÞT and ðfx; fyÞT, respectively. The spatial operators introduced above are listed side-by-side
with their continuous analog in Table 4. The discrete Laplacian and divergence operators generate inhomo-
geneous terms b̂c1 and bc2 resulting from the boundary conditions along oD. Note that b̂c1 depends on time
levels n and n + 1 (for CN method). For Eq. (44), bc2 is a function of time level n + 1. Details on Ê and Ĥ are
provided in Section 3.2. If oB moves with velocity unþ1

B over D, operator Ê or more precisely the Lagrangian
points are functions of time level n + 1. As stated in [30], a staggered grid formulation with velocity boundary
conditions requires no pressure boundary condition. Operators and vectors with hats are later transformed
with a diagonal matrices for scaling purposes.

Collecting the unknowns on the left-hand side, Eqs. (43)–(45) can be written as
Â Ĝ �Ĥ

D̂ 0 0

Ê 0 0

264
375 unþ1

/

f

0B@
1CA ¼ r̂n

0

unþ1
B

0B@
1CAþ b̂c1

bc2

0

0B@
1CA; ð46Þ



Table 4
Nomenclature of the discrete operators and their continuous analogs

Operator Discrete Continuous

Divergence D̂ r � ðÞ
Gradient Ĝ rðÞ
Interpolation Êun

R
x uðtn; ðxÞÞdðx� nÞdx

Regularization Ĥf
R

s fðnðs; tÞÞdðn� xÞds

Laplacian L̂ Re�1r2ðÞ
Convection N̂ðunÞ r � ðuðtnÞuðtnÞÞ
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where
Â � 1

Dt
I � 1

2
L̂ and r̂n � 1

Dt
I þ 1

2
L̂

� �
un � 3

2
N̂ðunÞ þ 1

2
N̂ðun�1Þ: ð47Þ
Although we omit the details, Â can be made symmetric and positive-definite quite easily.
In order to solve the above system efficiently, symmetry among the sub-matrices are desired. First, let us

make the gradient and divergence operators transpose of each other by a simple transformation. Both oper-
ators can be scaled appropriately so that the entries consist solely of �1 by introducing R and M̂ :
R �
Dyj 0

0 Dxi

� �
and M̂ �

1
2
ðDxi þ Dxi�1Þ 0

0 1
2
ðDyj þ Dyj�1Þ

" #
; ð48Þ
where the non-zero sub-matrices are diagonal. As a result D̂R�1 ¼ �ðM̂ĜÞT. For details on the construction of
Ĝ and D̂, refer to [6]. Note that R transforms velocity unþ1 to velocity flux qnþ1 � Runþ1. Using these transforms
in Eq. (46), we find
A G �M̂Ĥ

D 0 0

ÊR�1 0 0

264
375 qnþ1

/

f

0B@
1CA ¼ rn

0

unþ1
B

0B@
1CAþ bc1

bc2

0

0B@
1CA; ð49Þ
where
A � M̂ÂR�1; G � M̂Ĝ; D � D̂R�1 ¼ �GT; rn � M̂ r̂n; bc1 � M̂b̂c1: ð50Þ

Also, for ease of discussion in Sections 2 and 3 we define the mass matrix and the transformed Laplacian by
M � M̂R�1 and L � M̂L̂R�1 such that A ¼ 1

Dt M � 1
2
L. We note that A is symmetric and positive-definite by

construction.
All steps presented up to this point in this Appendix are for the fractional step method and nothing special

has been performed for the immersed boundary portion of our formulation. We recover Eq. (3) if we remove f

and the no-slip constraint from Eq. (49).
Finally, we re-define the interpolation and regularization operators by combining the diagonal matrices, R

and M̂ :
E � ÊR�1 and H � M̂Ĥ : ð51Þ

Combining Eqs. (49) and (51), we obtain Eq. (13):
A G �H

D 0 0

E 0 0

264
375 qnþ1

/

f

0B@
1CA ¼ rn

0

unþ1
B

0B@
1CAþ bc1

bc2

0

0B@
1CA; ð52Þ
Before closing, we note again that G ¼ �DT and A ¼ AT by construction.
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